Hypoxia and podocyte-specific Vhlh deletion confer risk of glomerular disease.

نویسندگان

  • Kirsten Brukamp
  • Belinda Jim
  • Marcus J Moeller
  • Volker H Haase
چکیده

Hypoxia is a potent regulator of a multitude of cellular processes, including metabolism and cell survival. The transcriptional response to oxygen deprivation is mainly mediated by hypoxia-inducible factors (HIFs), which are targeted for proteasomal degradation by the von Hippel-Lindau tumor suppressor protein (pVHL) under normoxia. Podocytes, as part of the glomerular filtration barrier, are prone to hypoxic injury during diseases affecting the glomerulus. VHL and HIF1 were functional in mature murine podocytes in vivo and in vitro, with HIF1 protein stabilization and target gene transcription under both hypoxia and VHL deficiency. Podocyte-specific Vhlh gene loss, mimicking podocyte hypoxia, in young mice of mixed background led to glomerulomegaly and occasional glomerulosclerosis, despite preserved glomerular development. In parallel, hypoxia effects on podocytes in cell culture included increased susceptibility to apoptosis, associated with nuclear translocation of apoptosis-inducing factor (AIF). Similarly, Vhlh gene inactivation in podocytes in vitro resulted in a significant survival disadvantage, particularly in conjunction with additional proapoptotic stimuli. Evaluation of the global transcriptional response to hypoxia in podocytes by microarray analysis revealed a typical upregulation of HIF target genes as well as the induction of genes relevant for stress response, cell-cell, and cell-extracellular matrix interaction. While the lack of a prominent phenotype in young mice with VHL-deficient podocytes is consistent with the absence of specific glomerular manifestations in human VHL disease, a low-oxygen environment of podocytes may contribute to the progression of glomerular disease by altering cellular metabolism and survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes.

The von Hippel-Lindau gene product (pVHL) targets the alpha subunit of basic helix-loop-helix transcription factor hypoxia-inducible factor (HIF) for proteasomal degradation. Inactivation of pVhl in the mouse germ line results in embryonic lethality, indicating that tight control of Hif-mediated adaptive responses to hypoxia is required for normal development and tissue function. In order to in...

متن کامل

Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis

Activation of signal transducer and activator of transcription (STAT)3 correlates with proliferation of extracapillary glomerular epithelial cells and the extent of renal injury in glomerulonephritis. To delineate the role of STAT3 in glomerular epithelial cell proliferation, we examined the development of nephrotoxic serum-induced glomerulonephritis in mice with and without podocyte-restricted...

متن کامل

Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury

Podocytes are highly specialized epithelial cells with complex actin cytoskeletal architecture crucial for maintenance of the glomerular filtration barrier. The mammalian Rho GTPases Rac1 and Cdc42 are molecular switches that control many cellular processes, but are best known for their roles in the regulation of actin cytoskeleton dynamics. Here, we employed podocyte-specific Cre-lox technolog...

متن کامل

Proteinuria with and without renal glomerular podocyte effacement.

Renal biopsies of patients with proteinuria and kidney disease most often are associated with podocyte foot process effacement. For several decades, nephrologists have wondered whether proteinuria is a result of podocyte foot process effacement or the cause of it. In the past few years, the author's laboratory has addressed this issue using different mouse models of proteinuria. Although in mos...

متن کامل

The Structural and Functional Organization of the Podocyte Filtration Slits Is Regulated by Tjp1/ZO-1

Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 4  شماره 

صفحات  -

تاریخ انتشار 2007